Enantioselective Catalysis by Artificial Tryptophan Synthase Formed with Functionalized Bilayer Membrane

Yukito MURAKAMI,* Yoshio HISAEDA, Koichiro NAKAMURA, and Jun-ichi KIKUCHI[†]

Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812 †Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840

A functionalized bilayer membrane, composed of a cationic peptide lipid having a L-histidyl residue, a hydrophobic pyridoxal derivative, and copper(II) ions, catalyzed the β -replacement reaction of serine with indole to afford tryptophan in a significant enantiomeric excess of the D-isomer.

Recently, we have developed artificial enzymes having vitamin B_6 activity by employing synthetic bilayer membranes. The bilayer vesicle composed of a synthetic peptide lipid, N,N-dihexadecyl- N^{α} -[6-(trimethylammonio)hexanoyl]-L-histidinamide bromide (N+C₅His2C₁₆), and a hydrophobic vitamin B_6 derivative, 1-[(dihexadecylcarbamoyl)methyl]-4-formyl-3-hydroxy-5-hydroxymethyl-2-methyl-pyridinium chloride (PL+C₁CON2C₁₆), exhibits efficient catalytic activity in the transamination reaction of α -amino acids with α -keto acids upon addition of copper(II) ions in aqueous media under mild conditions, showing high substrate selectivity. The identical vesicular catalyst behaves as an artificial tryptophan synthase which mediates the β -replacement reactions of L-serine (L-Ser) with indoles to afford the corresponding tryptophan derivatives (refer to Eq. 1).4,5) In the present

$$(CH_{3})_{3}N^{+}(CH_{2})_{5}CNHCHCN (CH_{2})_{15}CH_{3} Br^{-} N^{+}C_{5}His2C_{16}: R = CH_{2} N_{N} H$$

$$N^{+}C_{5}Ala2C_{16}: R = CH_{2} N_{N} H$$

$$N^{+}C_{5}Ala2C_{16}: R = CH_{3}$$

$$N^{+}C_{5}Ala2C_{16}: R = CH_{3}$$

$$OHC N^{+}CH_{2}XN (CH_{2})_{15}CH_{3} CI^{-} PL^{+}C_{1}CON2C_{16}: X = CO$$

$$HOH_{2}C YRC N^{+}CH_{2}XN (CH_{2})_{15}CH_{3} CI^{-} PL^{+}C_{2}N2C_{16}: X = CH_{2}$$

study, we clarified that an artificial tryptophan synthase formed with N+C₅His2C₁₆ and a hydrophobic pyridoxal derivative, 1-[2-(dihexadecylamino)ethyl]-4-formyl-3-hydroxy-5-hydroxymethyl-2-methylpyridinium chloride (PL+C₂N2C₁₆),⁶⁾ and copper(II) ions catalyzes the β -replacement reaction of serine with indole to afford tryptophan in a significant enantiomeric excess of the D-isomer.

The β-replacement reaction of serine with indole was studied in an aqueous acetate buffer (25 mmol dm⁻³, μ 0.04 with KCl) at pH 5.0 and 30.0 °C, in the presence of molecular aggregates formed with PL+C2N2C16 and each of the following amphiphiles; hexadecyltrimethylammonium bromide (CTAB), N,N-dihexadecyl- $N\alpha$ -[6-(trimethylammonio)hexanoyl]-L-alaninamide bromide (N+C₅Ala2C₁₆), and N+C₅His-2C₁₆. The highest catalytic activity for the β-replacement reaction was achieved by the vesicular system composed of N+C₅His2C₁₆, PL+C₂N2C₁₆, and copper(II) ions among these aggregates, in analogy with our previous work carried out by employing PL+C₁CON2C₁₆ in place of PL+C₂N2C₁₆.^{4,5)} Selectivity toward β-replacement and βelimination reactions for L-Ser, as exercised by the molecular aggregates in the presence of copper(II) ions, is listed in Table 1. Since the overall reactivity of the βreplacement and β-elimination reactions is comparable to each other among these catalyst systems, a difference in aggregation mode, micelles or bilayer vesicles, does not give out much influence in the initial reaction steps; formation of the aldimine Schiff-base chelate (A in Scheme 1) from PL+C2N2C16, L-Ser, and copper(II) ions, and the subsequent transformation of A into the α,β -eliminated intermediate (B in Thus, the bilayer aggregates formed with the synthetic peptide lipids provide a more favorable reaction site for an attack of the indole molecule on B, in comparison with the CTAB micelle.

It is noteworthy that the N+C₅His2C₁₆ - PL+C₂N2C₁₆ - Cu(II) system shows marked enantioselectivity in the β -replacement reaction. As listed in Table 2, the formation of D-tryptophan prevails over that of the corresponding L-form in 50-55% e.e. regardless of chirality of the substrate, serine. On the other hand, any detectable enantioselectivity was not observed when the N+C₅Ala2C₁₆ vesicule and the CTAB micelle were used in place of the N+C₅His2C₁₆ vesicle. Such results mean that the imidazolyl group of the L-histidyl residue introduced covalently into the peptide lipid exercises stereospecific acid catalysis in the protonation to the prochiral carbanion intermediate (C in Scheme 1) to afford the aldimine Schiff-base of PL+C₂N₂C₁₆ with tryptophan (D in Scheme 1).

In conclusion, it became apparent that the functionalized bilayer vesicle formed

Amphiphile	Relative yieldb)	
	β-Replacement ^{c)}	β-Elimination ^{d)}
СТАВ	1.0e)	6.9
N+C ₅ Ala2C ₁₆	3.6	2.8
N+C ₅ His2C ₁₆	5.1	2.3

Table 1. Reaction Selectivity Exhibited by Artificial Enzymes Formed with $PL^+C_2N2C_{16}$, Amphiphiles, and Copper(II) Ions at 30.0 \pm 0.1 °Ca)

a) In an aqueous acetate buffer (25 mmol dm⁻³, μ 0.04 with KCl) at pH 5.0. Concentrations in mmol dm⁻³: L-Ser, 5.0; indole, 5.0; PL+C₂N2C₁₆, 0.05; CTAB, 3.0; N+C₅Ala2C₁₆ and N+C₅His2C₁₆, 1.0; Cu(ClO₄)₂, 0.05. b) Evaluated after incubation for 200 h. c) β -Replacement product, tryptophan, was analyzed by HPLC on a column of TSK gel ODS-120T. d) β -Elimination product, pyruvate, was analyzed by HPLC after its conversion into the fluorescent 3-methyl-2-quinoxalinol by reaction with o-phenylenediamine (Ref. 7). e) Yield, 5.1 x 10⁻⁶ mol dm⁻³.

Scheme 1.

Chirality of serine	Total yield of tryptophan/mol dm-3 b)	e.e. of D-isomer/%c)
L	3.0 x 10 ⁻⁵	50
D	3.0×10^{-5}	5 5
DL	3.0 x 10 ⁻⁵	51

Table 2. Enantioselectivity Exhibited by Artificial Enzyme Formed with PL+C₂N₂C₁₆, N+C₅His₂C₁₆, and Copper(II) Ions at 30.0 \pm 0.1 °Ca)

a) In an aqueous acetate buffer (25 mmol dm⁻³, μ 0.04 with KCl) at pH 5.0. Concentrations in mmol dm⁻³: L-Ser, 5.0; indole, 5.0; PL+C₂N₂C₁₆, 0.05; N+C₅His₂C₁₆; 1.0; Cu(ClO₄)₂, 0.05. b) Evaluated after incubation for 200 h. c) Enantiomeric excess (e.e.) of tryptophan was determined by HPLC on a column of chiral CROWNPAK CR (Daicel Chemical Industries) with aqueous perchloric acid (pH 2.0) as an eluant.

with N⁺C₅His2C₁₆, PL⁺C₂N2C₁₆, and copper(II) ions effectively catalyzed the β -replacement reaction of serine with indole to afford tryptophan with chiral priority of its D-isomer. Detailed mechanistic analysis of the enantioselective catalysis is now in progress in our laboratory.

References

- 1) Y. Murakami, J. Kikuchi, K. Akiyoshi, and T. Imori, J. Chem. Soc., Perkin Trans. 2, 1985, 1919.
- 2) Y. Murakami, J. Kikuchi, K. Akiyoshi, and N. Shiratori, *Isr. J. Chem.*, 28, 23 (1987/1988).
- 3) Y. Murakami, J. Kikuchi, and N. Shiratori, Bull. Chem. Soc. Jpn., 62, 2045 (1989).
- 4) Y. Murakami, J. Kikuchi, and T. Kitazaki, J. Chem. Soc., Chem. Commun., 1988, 143.
- 5) Y. Murakami, J. Kikuchi, Y. Hisaeda, K. Nakamura, T. Kitazaki, and H. Kaya, *Bull. Chem. Soc. Jpn.*, in press.
- 6) PL+C₂N₂C₁₆ was prepared by the reaction of pyridoxal monomethylacetal with N,N-dihexadecyl-2-iodoethylamine, followed by hydrolysis to give a brown solid (the hemiacetal form); mp 145 °C (decomp); 500 MHz ¹H NMR (CDCl₃) δ = 0.88 [6H, t, CH₂(CH₂)₁₄CH₃], 1.25 [56H, s, CH₂(CH₂)₁₄CH₃], 2.86 [3H, s, CH₃ on pyridine ring], 3.22 [4H, m, CH₂(CH₂)₁₄CH₃], 3.49 [2H, m, CH₂N], 3.80 [2H, m, N+CH₂ on pyridine ring], 5.10 [2H, dd, CH₂O on pyridine ring], 6.70 [1H, s, CHOH], 8.89 [1H, s, H on pyridine ring]. Found: C, 65.90; H, 11.00; N, 3.62%. Calcd for C₄₂H₇₉ClO₃N₂·HCl· 2H₂O: C, 65.68; H,11.02; N, 3.65%.
- 7) T. Hayashi, H. Tsuchiya, H. Todoriki, and H. Naruse, Anal. Biochem., 122, 173 (1982).

(Received July 19, 1990)